Monocyte proliferation and differentiation to osteoclasts is affected by density of collagen covalently bound to a poly(dimethyl siloxane) culture surface.

نویسندگان

  • Yousef Shafieyan
  • Kerstin Tiedemann
  • Andrew Goulet
  • Svetlana Komarova
  • Thomas M Quinn
چکیده

Osteoclast differentiation is affected by substrate characteristics and environmental conditions; these parameters are therefore of interest for understanding bone remodeling. As a step toward osteoclast mechanotransduction experiments, we aimed to optimize conditions for osteoclast differentiation on extendable poly(dimethylsiloxane) (PDMS) substrates. Because cells attach poorly on PDMS alone, chemical modification by covalent attachment of collagen type I was performed. Effects of collagen surface concentrations on monocyte fusion and osteoclast differentiation were examined. Osteoclasts differentiated on modified PDMS were fewer in number (by ∼50%) than controls on polystyrene physically modified by nonspecific attachment of collagen, and exhibited somewhat different morphologies. Nevertheless, for certain choices of the chemical modification procedures, appropriate differentiation on PDMS was still evident by qRT-PCR analysis for tartrate-resistant acid phosphate (TRAP) and cathepsin K (CTSK) gene expression, positive TRAP staining, fluorescent phalloidin staining showing actin ring formation and bone resorption assays. At relatively high collagen surface densities, monocyte clumps appeared on PDMS suggesting substrate-induced alterations to monocyte fusion. Covalently bound collagen can therefore be used to promote osteoclast differentiation on extendable PDMS substrates. Under appropriate conditions osteoclasts retain similar functionality as on polystyrene, which will enable future studies of osteoclast interactions with microstructured surfaces and mechanostimulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantitative Analysis of the Proliferation and Differentiation of Rat Articular Chondrocytes in Alginate 3D Culture

Background: While articular chondrocytes are among those appropriate candidates for cartilage regeneration, the cell dedifferentiation during monolayer culture has limited their application. Several investigations have indicated the usefulness of alginate, but the topic of proliferation and differentiation of chondrocytes in alginate culture has still remained controversial. Methods: Rat articu...

متن کامل

Comparison of Proliferation and Osteoblast Differentiation of Marrow-Derived Mesenchymal Stem Cells on Nano- and Micro-Hydroxyapatite Contained Composite Scaffolds

Bones constructed by tissue engineering are being considered as valuable materials to be used for regeneration of large defects in natural bone. In an attempt to prepare a new bone construct, in this study, proliferation and bone differentiation of marrow-derived mesenchymal stem cells (MSCs) on our recently developed composite scaffolds of nano-, micro-hydroxyapatite/ poly(l-lactic acid) were ...

متن کامل

Evaluation of Human Breast Adenocarcinoma (MCF-7) Cells Proliferation in Co-Culture with Human Adipocytes in Three Dimensional Collagen Gel Matrix: Norepinephrine as a Lipolytic Factor

Background: Norepinephrine plays a trophic role in the control of cell replication and differentiation in target cells that express adrenergic receptors. Methods: In this study, we have tested the influence of infraphysiological, physiological and supraphysiological concentrations (0.0001 nM, 1 nM, 10000 nM) of human norepinephrine on the proliferation of breast cancer cells (human breast adeno...

متن کامل

Effects of BIO on proliferation and chondrogenic differentiation of mouse marrow-derived mesenchymal stem cells

In vitro expansion of mesenchymal stem cell (MSCs) into large number is necessary for their application in cell-based treatment of articular cartilage defects. On the other hand, some studies have indicated that BIO (6-Bromoindirubin-3-Oxime) possesses mitogenic effects on cell culture. The objective of the present study was to examine the effect of BIO on in vitro expansion and chondrogenic di...

متن کامل

Co-culture of Umbilical Cord-derived Hematopoietic and Mesenchymal Stem Cells on Protein-Coated poly-L-Lactic Acid Nanoscaffolds

Background and purpose: Umbilical cord blood (UCB) is a source of Hematopoietic stem cells (HSCs) and has received a lot of attention due to its availability, renewal capacity, proliferation rate, and differentiation potential. The main limitation of using these cells is their low quantity in one unite of UCB. To overcome this, HSCs co-culturing with UCB derived mesenchymal cells (MSCs) is a pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomedical materials research. Part A

دوره 100 6  شماره 

صفحات  -

تاریخ انتشار 2012